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In the presence of background rotation, conventional two-dimensional models of
geostrophic flow in a rotating system usually include Ekman friction – associated
with the no-slip condition at the bottom – by adding a linear term in the vorticity
evolution equation. This term is proportional to E1/2 (where E is the Ekman number),
and arises from the linear Ekman theory, which yields an expression for the vertical
velocity produced by the thin Ekman layer at the flat bottom. In this paper, a two-
dimensional model with Ekman damping is proposed using again the linear Ekman
theory, but now including nonlinear Ekman terms in the vorticity equation. These
terms represent nonlinear advection of relative vorticity as well as stretching effects.
It is shown that this modified two-dimensional model gives a better description of the
spin-down of experimental barotropic vortices than conventional models. Therefore,
it is proposed that these corrections should be included in studies of the evolution of
quasi-two-dimensional flows, during times comparable to the Ekman period.

1. Introduction
This study revisits the problem of bottom damping effects on barotropic, quasi-

two-dimensional flows with background rotation over a flat surface. Examples of
such flows are large-scale coherent structures frequently observed in the atmosphere
and the ocean as well as in laboratory experiments (in a rotating fluid tank), which
are usually only slightly affected by the no-slip boundary condition at the bottom
(it is stressed, however, that laboratory experiments are strongly simplificated models
of large-scale vortices affected by the Earth’s rotation). Essentially, the presence of
a bottom (topography) induces a three-dimensional effect, which breaks the two-
dimensional character of the flow. However, the weakness of bottom damping effects
allows their incorporation in a two-dimensional physical model (for this reason the
term ‘quasi’ is used). In particular, this type of dynamics plays an important role in
the evolution and decay of barotropic (density-homogeneous) vortices in laboratory
experiments (see e.g. van Heijst, Kloosterziel & Williams 1991; Kloosterziel & van
Heijst 1992; Orlandi & van Heijst 1992; Maas 1993; henceforth referred to as vH91,
KvH92, OvH92 and M93, respectively). In this paper, a physical model describing
two-dimensional flows in the presence of weak bottom damping effects is derived in
order to study the behaviour of laboratory vortices. The results are compared with
the studies cited above and with the predictions of conventional two-dimensional
models.

Taking advantage of the predominantly two-dimensional motion in rotating fluid
systems with small or moderate Rossby number (i.e. in which the geostrophic balance
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dominates), bottom friction can be incorporated in the two-dimensional evolution
equation. The crucial step consists of vertical integration of the continuity equation
(since the flow is two-dimensional) and use of appropriate expressions for the vertical
velocity induced by the Ekman boundary layers at the free-surface and at the bottom.
Such velocities can be obtained by using linear theory for the Ekman layers, either
at the free surface (due to wind stress, which will not be considered here, however)
or at the no-slip bottom. The thickness of the Ekman boundary layer, δE , is of order
(ν/Ω)1/2 (with ν the kinematic viscosity and Ω the background rotation rate), which
is usually very thin compared with the total fluid depth H . The linear Ekman theory
predicts that the vertical velocity on top of the Ekman layer is proportional to the
relative vorticity in the interior flow. Although this vertical velocity is much smaller
than the horizontal velocities, it does affect the flow evolution. This effect is usually
incorporated in the quasi-geostrophic vorticity equation (for a homogeneous flow) by
adding a linear term, which measures the stretching effects induced by this Ekman
‘suction’ (Pedlosky 1987, section 4.6). In numerous papers, Ekman friction has also
been included in the two-dimensional vorticity equation using the same result (e.g.
by OvH92, among many others). The basic assumption in these models is that the
nonlinear terms appearing in the vorticity equation, when the Ekman condition is
applied, are negligible. As will be shown in the next section, this assumption can
be relaxed and the resulting new, nonlinear Ekman friction terms, although rather
small, lead to significant differences compared to the conventional approximation. In
particular, they explain the observed decay of barotropic laboratory vortices more
satisfactorily than models based on the linear formulation.

Thus, the quasi-two-dimensional model developed here simply retains all the Ekman
damping terms (linear and nonlinear). The model can be expressed in an ω–ψ
formulation, with the relative vorticity (ω) and stream function (ψ) related through
a Poisson equation, as in the purely two-dimensional case. However, the horizontal
velocities have a correction of order O(δE/H) = O(E1/2) (where E is the Ekman
number), which is absent in the conventional two-dimensional model.

An alternative approximation was given by Wedemeyer (1964) for the spin-up
problem in an axisymmetric flow. The Wedemeyer model has been reformulated by
several authors for the study of the spin-down of barotropic vortices in a rotating
fluid tank (see e.g. KvH92, M93) or for the study of the spin-up process in non-
axisymmetric containers (van de Konijnenberg 1995). This model allows analytical
solutions for axisymmetric flows, under certain restrictions. The obvious limitation of
this approximation is the assumption of axisymmetry. Later in this paper it is shown
that the Wedemeyer model is a special case of the present approximation.

The rest of the paper is organized as follows. The model is derived in § 2. It
is possible, although not straightforward, to extend the present theory to the case
of a non-flat bottom (work is in progress on the study of Ekman damping over
irregular topographies). In § 3, the model is tested by numerically solving the vorticity
equation and comparing the results with laboratory experiments on the decay of
isolated and non-isolated vortices. Also, a comparison is made with the conventional
two-dimensional models. Finally, in § 4 the results are discussed.

2. Ekman damping over a flat bottom
In this section, a quasi-two-dimensional model is derived, which includes the effects

of the Ekman damping associated with a flat bottom. In order to derive a two-
dimensional model in a rotating fluid system, the basic assumption is that the
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Figure 1. Schematic view of a homogeneous fluid layer over a flat bottom in a rotating system.

geostrophic balance dominates the flow evolution. This assumption implies that the
horizontal velocities, perpendicular to the axis of rotation, can be considered as
depth-independent (Taylor–Proudman theorem). A geostrophic balance is established
for small Rossby numbers, i.e. when the relative horizontal accelerations are small
compared with Coriolis accelerations and horizontal pressure gradients. In laboratory
experiments in a rotating fluid tank, even flows with moderate Rossby number values
(e.g. 0.6, see M93) have been observed to show a two-dimensional behaviour, except
in the Ekman boundary layer at the bottom. Therefore, the depth-independence of
the horizontal motion under typical experimental conditions can be considered as a
reasonable approximation for modelling this type of flow.

The depth-independence of the horizontal velocities permits integration of the
continuity equation in the vertical direction, from which an expression for the vertical
velocity is obtained. Afterwards, the effect of the Ekman layer on the interior flow
is incorporated by considering the Ekman condition (the vertical velocity induced
by the Ekman layer at the bottom). The Ekman condition is a result of the linear
Ekman theory, which assumes geostrophic balance in the interior flow. It has been
found in numerous experimental studies, however, that the Ekman condition is a good
approximation for introducing the effects of bottom damping even for moderately
nonlinear flows (see e.g. M93; KvH92). The results of the present paper also confirm
the validity of this approximation.

2.1. The model

Using Cartesian coordinates, the horizontal momentum equations and the continuity
equation for a homogeneous fluid layer in a rotating system are (see figure 1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −1

ρ

∂P

∂x
+ ν∇2u, (2.1)
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+ ν∇2v, (2.2)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.3)

where the z-derivatives have been neglected. Here, (u, v, w) are the velocity components
in the (x, y, z) directions, respectively, where z is aligned with the gravitational acceler-
ation g = (0, 0,−g), u and v are assumed z-independent, f = 2Ω is the Coriolis param-
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eter with Ω the rotation rate of the system, t is the time, ν is the kinematic viscosity,
∇2 = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian operator and ρ is the constant fluid
density. The reduced pressure P is

P = p+ ρgz − 1
8
ρf2r2, (2.4)

where p(x, y, z, t) is the thermodynamic pressure, and the last term represents the
pressure associated with the system’s rotation, r being the distance from the rotation
axis. In the vertical direction, the motion is confined between

06 z6H + η ≡ h, (2.5)

where H is the layer depth in the absence of any relative motion and η(x, y, t) is
the free-surface elevation relative to H . Note that η contains the elevation associated
with the parabolic shape of the free surface (f2r2/8g) together with the elevation
associated with the flow motion, which might be time-dependent. In the vertical
direction the hydrostatic balance is assumed to apply. The vertical velocity can be
obtained from the horizontal velocities by integrating the continuity equation in the
vertical direction.

As usual, the pressure gradients are eliminated by taking the y-derivative of (2.1)
and subtracting it from the x-derivative of (2.2), yielding the vorticity equation:

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
+

(
∂u

∂x
+
∂v

∂y

)
(ω + f) = ν∇2ω, (2.6)

where ω = ∂v/∂x− ∂u/∂y is the relative vorticity.
Two-dimensional models are constructed by deriving adequate expressions to sub-

stitute the horizontal velocity components (u and v) and the horizontal divergence
(∂u/∂x+ ∂v/∂y) in equation (2.6). These expressions are obtained by integrating the
continuity equation over the fluid depth, i.e. from z = 0 to z = h. Under the assump-
tion that u and v are z-independent in the interior (i.e. outside boundary layers), this
integration yields (

∂u

∂x
+
∂v

∂y

)
h = −(w|z=h − w|z=0). (2.7)

Ignoring wind stress, the vertical velocity on the free surface is given by the
kinematic condition

w|z=h =
Dh

Dt
, (2.8)

where D/Dt is the material derivative.
The thin Ekman layer at the bottom generally induces a non-zero vertical velocity.

For flat bottom topographies and low Rossby numbers, this velocity is proportional
to the relative vorticity of the interior flow outside the Ekman layer; this is expressed
by the so-called Ekman condition:

w|z=0 = 1
2
δEω, (2.9)

where the thickness of the Ekman layer is

δE =

(
2ν

f

)1/2

. (2.10)

With (2.8) and (2.9) the horizontal divergence in (2.7) may be written as

∂u

∂x
+
∂v

∂y
= −1

h

Dh

Dt
+

1

2

δE

h
ω. (2.11)
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This expression states that the horizontal divergence is caused by changes in the fluid
depth associated with free-surface variations and by the vertical velocity induced
by the Ekman layer at the flat bottom (effects of topography are excluded here).
Considering η � H , the free-surface effects can be filtered out from the continuity
equation by approximating h ≈ H and Dh/Dt ≈ 0. Equation (2.11) then becomes

∂u

∂x
+
∂v

∂y
= 1

2
E1/2ω, (2.12)

where E1/2 = δE/H , with E = 2ν/(fH2) the Ekman number.
Substitution of (2.12) in (2.6) yields

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= ν∇2ω − 1

2
E1/2ω(ω + f). (2.13)

At this point, it is still necessary to obtain suitable expressions for u and v in the
nonlinear terms on the left-hand side of this equation. This is achieved by rewriting
(2.12) as

∂

∂x
(u− 1

2
E1/2v) +

∂

∂y
(v + 1

2
E1/2u) = 0 (2.14)

and by defining a stream function ψ such that

u− 1
2
E1/2v =

∂ψ

∂y
, (2.15)

v + 1
2
E1/2u = −∂ψ

∂x
. (2.16)

From these equations, the corresponding expressions for the velocities in terms of
the stream function are obtained:

u =
1

1 + 1
4
E

(
∂ψ

∂y
− 1

2
E1/2 ∂ψ

∂x

)
, (2.17)

v =
1

1 + 1
4
E

(
−∂ψ
∂x
− 1

2
E1/2 ∂ψ

∂y

)
. (2.18)

Retaining O(1) and O(E1/2) terms (since E � 1), the horizontal velocities can be
written as

u =
∂ψ

∂y
− 1

2
E1/2 ∂ψ

∂x
, (2.19)

v = −∂ψ
∂x
− 1

2
E1/2 ∂ψ

∂y
. (2.20)

By inserting (2.19) and (2.20) in the definition of the relative vorticity (ω = ∂v/∂x−
∂u/∂y) it is verified that

ω = −∇2ψ. (2.21)

Note that the O(E1/2) correction in the horizontal velocities is actually a potential
flow, since it vanishes when the curl of the velocity field is taken.

Finally, by substituting (2.19) and (2.20) in (2.13) one arrives at the following
evolution equation for the relative vorticity:

∂ω

∂t
+ J(ω,ψ)− 1

2
E1/2∇ψ · ∇ω = ν∇2ω − 1

2
E1/2ω(ω + f), (2.22)
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where J is the Jacobian operator. The horizontal velocities (2.19) and (2.20), the
Poisson equation (2.21) and the vorticity evolution equation (2.22), represent the ω–ψ
formulation of the two-dimensional model, including the flat-bottom Ekman damping
(henceforth this is referred to as model M1).

2.2. Comparison with conventional models

The conventional two-dimensional model including bottom damping, used in many
previous studies, only considers the linear part of the Ekman suction in the vorticity
equation (model M2):

∂ω

∂t
+ J(ω,ψ) = ν∇2ω − 1

2
E1/2fω. (2.23)

Under this approximation, ω and ψ are related through the Poisson equation (2.21),
but the horizontal velocities do not include the O(E1/2) correction as in (2.19) and
(2.20).

The model M1 can be straightforwardly reduced to the purely two-dimensional
model (hereafter, model M3) by dropping the Ekman terms (which originate from
applying the Ekman condition (2.9) at the bottom):

∂ω

∂t
+ J(ω,ψ) = ν∇2ω. (2.24)

As in model M2, the horizontal velocities do not include the O(E1/2) correction,
and the relative vorticity and stream function are again related through the Poisson
equation (2.21).

In order to compare the importance of each term in the extended model M1 the
variables are non-dimensionalized by using the following scaling:

[ω,ψ] = [U/L,UL] (2.25)

and

[x, y, t] = [L, L, TE], (2.26)

where L and U are typical horizontal length and velocity scales, respectively. The
time is non-dimensionalized by using the Ekman timescale TE = 2/(fE1/2). In non-
dimensional form, model M1 (2.22) is then written as

1
2
E1/2 ∂ω

∂t︸ ︷︷ ︸
I

+ εJ(ω,ψ)︸ ︷︷ ︸
II

− 1
2
E1/2ε∇ψ · ∇ω︸ ︷︷ ︸

III

= Eδ2∇2ω︸ ︷︷ ︸
IV

− 1
2
E1/2εω2︸ ︷︷ ︸

V

− 1
2
E1/2ω︸ ︷︷ ︸
VI

. (2.27)

Besides the Ekman number, the Rossby number (ε = U/fL) and the aspect ratio of
the vertical and horizontal scales (δ = H/L) appear.

In the conventional model M2, the O(E1/2ε) terms in (2.27) have been neglected
under the assumption of small Rossby number. These neglected terms represent the
correction to the advection of relative vorticity (III) and the nonlinear contribution
in the stretching effects (V ). Note that lateral viscous effects, represented by term
IV , are still considered. However, under experimental conditions these terms are
usually smaller than, or at most of the same order as, the nonlinear corrections III
and V . For typical vortices in the laboratory, E ≈ 10−4, δ ≈ 4, and ε ≈ 0.5. Thus,
Eδ2 ≈ 1.6 × 10−3, while E1/2ε ≈ 5 × 10−3. Therefore, it is concluded that terms III
and V should also be included, in order to improve the two-dimensional model.
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3. Testing the model
The extended model M1, given by (2.19), (2.20), (2.21) and (2.22), is tested by

means of laboratory experiments and numerical simulations. The laboratory experi-
ments concerned the spin-down of non-isolated cyclonic vortices in a rotating tank.
In addition, experimental results of vH91 were also used for studying the evolution
of isolated vortices. Non-isolated vortices have a non-vanishing circulation, i.e. they
contain a non-zero net amount of vorticity, while isolated vortices have zero net
vorticity. Vortices of the latter type may become unstable and transform into tripolar
structures (vH91; Kloosterziel & van Heijst 1991). The numerical simulations con-
sisted of solving (2.21) and (2.22) by means of a finite differences code, and the results
are compared with the experimental data.

Thus model M1 is tested in two parts: (1) Experiments on the decay of non-isolated
vortices are performed; typical vortex parameters (radius of maximum velocity, peak
vorticity in the core, etc.) are measured during more than one Ekman period (which is
the decay time scale due to bottom friction), and compared with numerical solutions
using model M1. (2) The evolution and decay of isolated vortices are simulated
numerically, and the results are compared with the experimental data of vH91. In
both cases, model M1 is also compared with numerical simulations using model M2.

Before showing the results obtained, the experimental arrangement and the numer-
ical code are briefly discussed in the following two subsections.

3.1. Experimental arrangement

The laboratory experiments were performed in a rotating tank filled with fresh tap
water. The horizontal size of the rectangular tank is 1 m × 1.5 m. The tank rotates
in the anticlockwise direction at a constant rate Ω = 0.5 s−1, which corresponds to a
Coriolis parameter f = 2Ω = 1 s−1.

The flow was visualized by tracer particles floating on the surface, and its evolution
could be recorded by a co-rotating camera mounted some distance above the rotating
tank. The tracer particles were sprinkled all over the free surface, so that information
was obtained about the flow in the entire tank. The video images obtained were pro-
cessed with the digital image processing package DigImage (Dalziel 1992). With this
technique, the positions and velocities of large numbers of tracers can be determined.
Subsequently, the velocity data are interpolated onto a rectangular grid in order to
facilitate calculation of the vorticity and stream function fields.

In this paper, two types of cyclonic vortices in the rotating tank fluid are studied,
namely the so-called ‘sink’ and ‘stirring’ vortices. The sink vortices have a single-
signed vorticity and are hence non-isolated, while stirring vortices consist of a core
surrounded by an annulus of oppositely-signed vorticity in such a way that vortices
are isolated. In this study, only experiments on non-isolated vortices are performed,
while the experimental results on isolated vortices are taken from vH91. Sink vortices
can be produced by locally syphoning a fixed amount of fluid, during a certain period
of time, through a thin perforated tube. Stirring vortices are created by placing a
small, bottomless cylinder in the tank, stirring the fluid in the cylinder, and then
removing it, thus releasing the vortex in the ambient solidly-rotating fluid (for further
details on both methods see e.g. vH91 and KvH92).

For the flat-bottom case, typical radial distributions of the vorticity and azimuthal
velocity are, for non-isolated vortices,

ωsink(r) = ω0 exp

(−r2

R2

)
, (3.1)
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vsink(r) =
R2ω0

2r

[
1− exp

(−r2

R2

)]
, (3.2)

while for isolated vortices

ωstir(r) = ω0

(
1− r2

R2

)
exp

(−r2

R2

)
, (3.3)

vstir(r) =
ω0r

2
exp

(−r2

R2

)
, (3.4)

where ω0 is the peak vorticity, R a horizontal length scale, and r the radial distance
to the centre of the vortex. Typical vortex parameters for the laboratory experiments
discussed here are ω0 ≈ 3 to 5 s−1 and R ≈ 2 to 4 cm.

3.2. Numerical simulations

The laboratory experiments are numerically simulated by solving (2.21) and (2.22) with
a finite differences code. This code was originally developed by Orlandi and Verzicco
(see e.g. Orlandi 1990) for purely two-dimensional flows, and later extended by van
Geffen (1998) in order to include rotational effects. Later, topographic variations
were included in the code in order to study the effect of bottom topography on
barotropic vortices (Zavala Sansón & van Heijst 2000; Zavala Sansón, van Heijst
& Doorschot 1999). In this paper, the effect of Ekman friction on flow over a flat
bottom is included.

In the simulations, the experimental domain was discretized by 128×128 grid points,
which has proven to give a reasonably good resolution for the present rotating tank
experiments (see e.g. Zavala Sansón & van Heijst 1999) and to be computationally
inexpensive. Additional simulations with doubled grid resolution showed very similar
results in all cases.

3.3. Non-isolated vortices

The first test for the model concerns the decay of a sink vortex over a flat bottom. This
problem has been studied before, analytically and experimentally, by a number of
authors (see e.g. KvH92). For this purpose, sink vortices are produced in the rotating
tank using three different depths H (24, 18 and 12 cm). The axisymmetric vorticity and
velocity distributions of this type of vortex are well approximated by the expressions
(3.1) and (3.2). The basic quantities measured in the experiments are the radius of
maximum velocity (Rmax), the maximum velocity (Vmax), the vortex strength (Γ ) and
the peak vorticity in the vortex core (ω0). The method for measuring these parameters
consists of fitting the experimental velocities of passive tracers floating at the surface
to expression (3.2), in order to obtain R and ω0, and then obtaining Γ = ω0πR

2.
The parameters Rmax and Vmax are directly measured. Afterwards, these values are
compared with the corresponding numerical simulations. Obviously, the vortex peak
vorticity, strength and maximum velocity decrease in time. With regard to the radius
of maximum velocity, it is expected that a gradual increase will be observed, due to
the Ekman condition at the bottom (see e.g. KvH92; M93; Garcı́a Sánchez & Ochoa
1995). Indeed, the relative vorticity is positive in the vortex core and therefore the
vertical velocity induced by the Ekman layer is also positive (upwards), hence giving
rise to an expansion of the vortex. The experiments had a duration longer than the
corresponding Ekman period TE . Table 1 shows the initial vortex parameters (60 s
after the forcing was stopped) and the corresponding Ekman periods.
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Experiment H (cm) TE (s) ω0 (s−1) R (cm)

1 24 339 2.88 3.14
2 18 255 3.26 2.86
3 12 170 3.10 3.07

Table 1. Characteristic parameter values for the experiments on the decaying sink vortex over a
flat bottom. The calculation of the Ekman periods is based on f = 1 s−1 and ν = 0.01 cm2 s−1 (the
kinematic viscosity of water at 20◦C).
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Figure 2. Time evolution of the sink vortex parameters in experiment 2 (H = 18 cm): (a) radius of
maximum velocity (Rmax), (b) maximum velocity (Vmax), (c) vortex strength (Γ ), and (d) peak vorticity
(ω0). Circles denote experimental measurements. The dashed line (−−−) represents the numerical
simulation using M1 (extended model), the dashed-dotted line (− · − · −·) M2 (linear Ekman
damping) and the dotted line (· · ·) M3 (without Ekman effects). (60) denotes initial parameters 60 s
after the forcing was stopped.

For the moment, attention is focused on experiment 2. Figure 2 shows the evo-
lution of the vortex parameters (Rmax, Vmax, Γ and ω0) measured in the experiment
(circles) and the corresponding numerical simulations. The dashed line is calculated
numerically by solving model M1, while the dashed-dotted line represents the result
obtained by solving M2. The dotted line shows the conventional two-dimensional
model M3, i.e. without any bottom friction term, but including lateral viscous effects.
The time evolution is non-dimensionalized by using the corresponding Ekman time
TE . The plots are made such that they can be easily compared with figures 5 and 9
of KvH92. These authors show the Rmax and Vmax evolution of ‘collapse’ vortices but
also one case of a sink vortex.

First, it is evident that the results obtained with model M1 (dashed line) fit the
experimental results much better than any of the other curves. From the M3 result in
figure 2(a), note that there is an increment in Rmax due only to lateral viscous effects
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Figure 3. Same experimental data (circles) as in figure 2, compared with numerical simulations
without including lateral viscous effects. The dashed line (−−−) represents the M1 simulation, the
dashed-dotted line (− ·− ·−·) M2, and the dotted line (· · ·) is obtained by using M1 without lateral
viscous effects and advective terms.

(see Kloosterziel 1990a). It is clear that M2 does not give any additional contribution
to this Rmax expansion, since it coincides with M3; however, both of them fail to
predict the correct Rmax evolution, in contrast to M1. This is not surprising, since the
linear Ekman term only contributes to the vortex decay, without any radial advection
of Vmax. Note also that M2 underestimates the decay of the maximum velocity Vmax
(see figure 2b) and the peak vorticity ω0 (see figure 2d). The additional damping and
the Rmax increase in M1 is due to the nonlinear Ekman terms, as will be discussed
below and in the discussion section. Also note that the vortex strength (figure 2c) is
well predicted by M2.

In order to show the role of the Ekman terms in M1 more clearly, figure 3 presents
the same experimental results, but now compared with numerical simulations in
which the lateral viscous effects, term IV of (2.27), are omitted. Note that the
Jacobian term II is very small in this quasi-axisymmetric example. As before, the
dashed-line corresponds to M1 and the dashed-dotted line to M2. The dotted line now
corresponds to the reduced model M1, in which the Ekman advective effects (term
III) are also omitted; this latter simulation was performed in order to appreciate the
effect of this term.

The main results are the following. First, note that M1 gives a reasonable approx-
imation to the experimental data even without lateral viscous effects, which clearly
indicates the smallness of these terms. Second, when omitting lateral viscous effects
and the Jacobian term, M2 has the solution (Greenspan & Howard 1963)

ω = ω0 exp (−t/TE). (3.5)

Because there are no lateral viscous effects, Rmax remains constant, and the other
parameters decay exponentially as exp (−t/TE). Third, the simulation without lateral
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Figure 4. Time evolution of the sink vortex parameters in experiments 1 (H = 24 cm) and 3
(H = 12 cm): (a) and (c) radius of maximum velocity (Rmax), (b) and (d) peak vorticity (ω0). Circles
denote experimental measurements. The dashed line (− − −) represents the numerical simulation
using M1 (extended model) and the dashed-dotted line (− ·− ·−·) M2 (linear Ekman damping).

viscosity and advective terms (reduced model M1, dotted line) has the solution
(Kloosterziel 1990b)

ω =
ω0 exp (−t/TE)

(ω0/f)[1− exp (−t/TE)] + 1
(3.6)

for the peak vorticity decay, figure 3(d). However, the Rmax increase is slower than in
M1, and therefore, the vortex strength decays faster. This simulation clearly shows
the role of the advective Ekman terms: they provide a larger vortex expansion, while
the peak vorticity decay is only slightly affected. Recall that this observation is made
for these simulations in which lateral viscous effects are neglected.

Finally, the results for experiments 1 (H = 24 cm) and 3 (H = 12 cm) show a similar
behaviour to experiment 2 (see figure 4). In these cases, model M1 also provides a
better prediction for the evolution of the vortex parameters than models M2 and
M3. From previous examples, it may be concluded that M1 simulates the laboratory
experiments on a decaying non-isolated vortex over a flat bottom very well.

3.4. Isolated vortices: the tripole formation

Isolated cyclonic vortices in rotating tank experiments are often observed to evolve
towards a tripolar structure, formed by a cyclonic core with two anticyclonic satellites.
This type of vortex was experimentally studied by vH91 and numerically by OvH92,
where model M2 was used. Therefore, in order to test the new model M1, the results
in these two papers are compared with numerical simulations using the extended
model.

All the parameters in the present numerical simulations are chosen the same as
those in OvH92, except the mean depth, which was H = 15 cm in their case, while
here H = 18 cm, corresponding to the experimental value in vH91. The rest of
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Figure 5. Time evolution of (a) the stirring vortex peak vorticity (tripole core) and (b) the tripole
orientation angle. In both plots, dashed lines (−−−) denote the numerical simulations using M1,
and the dashed-dotted lines (− ·− ·−·) represent the M2 simulations.

the flow parameters are the reference velocity U = 26.4 cm s−1, the characteristic
length scale L = 4 cm, the kinematic viscosity ν = 0.01 cm2 s−1, and the Coriolis
parameter f = 2 s−1. The vortex parameters in equations (3.3) and (3.4) are given
by ω0 = U/L and R =

√
2L. The domain was a square box of 30 cm × 30 cm with

free-slip walls, discretized with a 128× 128 rectangular grid. Also, the initial vorticity
distribution given by (3.3) was randomly perturbed using a similar method to OvH92.
A perturbation of this type leads to the formation of a tripolar vortex structure.

There are three methods of comparing the present results with those in vH91
and OvH92: measuring the peak vorticity decay in the vortex core; measuring the
anticlockwise rotation of the whole tripole structure; making scatter plots, which
show the ω–ψ relationship during the tripole evolution. In all cases, model M1 proves
to give better results than M2.

Figure 5(a) shows the experimental results of vH91 for the peak vorticity decay
at the core of the tripole (circles). The dashed and dashed-dotted lines represent the
numerically calculated peak vorticity values, ω0(t), using M1 and M2, respectively.
The time has been non-dimensionalized with the Ekman time scale TE = 180 s. This
plot shows that M1 gives a better prediction for the peak vorticity decay. This result
is not conclusive, however, since the M2 prediction is not too far off the observational
data. Indeed, this is similar to what was observed in the non-isolated vortex case,
figure 2(d), where the prediction for the peak vorticity decay was somewhat better in
M1 than in M2, although the difference was not really large.

A much stronger test for the new model is presented in figure 5(b), which shows
the anticlockwise tripole orientation angle (θ) as a function of time. In the laboratory
experiment, θ was measured during an Ekman period, in which the tripole performed
three revolutions. The good agreement between the experimental results and the M1
prediction is remarkable. The discrepancy between the model calculations and the
laboratory observations is less than one fourth of a revolution. In contrast, the M2
prediction fails by more than two and a half revolutions. (Note that there is an
error in the experimental values shown in OvH92, figure 6, which is attributed to the
typographical error in the vertical scale of figure 9, in vH91.)

An additional test for M1 is obtained by means of scatter plots. Such plots are
useful to diagnose stationary two-dimensional structures in inviscid flows (governed
by ∂ω/∂t + J(ω,ψ) = 0), since a well-defined ω–ψ relationship in such plots (i.e.
ω = F(ψ)) indicates that the Jacobian term is zero. Obviously, the tripolar vortex is
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not a stationary structure, due to its anticlockwise rotation. However, vH91 produced
scatter plots in a reference frame co-moving with the tripole, seeking the possible
stationarity of the flow in such a coordinate system. In this particular frame, the
corrected ω and ψ values are given by

ψ∗ = ψ + 1
2
θ̇r2 (3.7)

and

ω∗ = ω − 2θ̇. (3.8)

Figures 6(a) and 6(b), show the calculated ω∗–ψ∗ relationship for three different
times, using M2 and M1, respectively. These plots can be compared with the corre-
sponding experimental results in vH91 (their figures 15a, c and d) shown in figure 6(c).
As explained in that paper, tripole scatter plots are formed by three main branches:
the positive vorticity core, the negative vorticity in the satellites and the negative
constant vorticity in the ambient fluid, outside the tripole. It is very clear that the
numerical results obtained with the new model are much more satisfactory than those
obtained with the conventional model. Note that the substantial dispersion shown in
the experiments is also present in M1, and not in M2. In particular, the negative peak
values in the satellites, which decay slower than the vortex core, are well simulated
in M1, even for later stages (t = 120 s). As mentioned in vH91, this is due to the
difference in decay time scales between positive and negative vortices, which is larger
in the negative satellites; this effect is captured by including the nonlinear Ekman
terms in the new model. Similar plots are also given in OvH92; however, direct
comparison has not been made because their numerical simulation used H = 15 cm,
instead of 18 cm, which gives a different value for θ̇ in the ω∗–ψ∗ corrections.

4. Summary and discussion
A two-dimensional model including damping effects associated with the no-slip

condition at a flat bottom has been derived (model M1). This model incorporates
the frictional effects due to the solid bottom by means of the linear Ekman theory,
which predicts the vertical velocity induced by the thin Ekman layer at the bottom.
In this model, nonlinear Ekman terms in the vorticity equation are also included,
and a suitable ω–ψ formulation is found, see (2.22) or (2.27). These terms are usually
neglected in conventional two-dimensional models since they are considered small
due to the low Rossby number assumption, a prerequisite for using the linear Ekman
theory. The most common two-dimensional model including Ekman damping effects,
model M2, only contains a linear term in the vorticity equation, see (2.23). Usually,
model M2 and the purely two-dimensional model M3 (i.e. without Ekman friction,
see (2.24)) also include lateral viscous effects. For the experimental cases considered
here, however, these terms are actually as small as the nonlinear Ekman terms (see
§ 2). Therefore, it is proposed that a more complete two-dimensional model should
include these nonlinear effects, even though the Rossby number of the flow is small.
In fact, it has been suggested before (e.g. KvH92; M93) that linear Ekman theory still
applies for moderate Rossby numbers, which reinforces the idea of including those
nonlinear Ekman terms. One additional advantage of model M1 is that viscous effects
can be separated and studied independently. These effects are the Ekman advection
effects (term III in (2.27)), the lateral viscosity (IV ), and the nonlinear (V ) and linear
(VI) Ekman stretching effects on fluid columns. Also, horizontal velocities in model
M1 have a small correction due to Ekman effects, proportional to E1/2.
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Figure 6. Numerically calculated scatter plots showing the corrected ω∗–ψ∗ relation representing
the tripole evolution at three different times (t/TE = 0.11, 0.25 and 0.67). (a) Model M2, (b) model
M1 and (c) experimental plots (taken from vH91).

The extended two-dimensional model M1 has been applied to study the decay of
experimental barotropic vortices. These vortices are cyclonic structures, either non-
isolated (mostly with single-signed vorticity) or isolated (a vortex core surrounded by
oppositely-signed vorticity). In the laboratory, non-isolated vortices are usually met in
the form of stable cyclones (KvH92), which remain approximately axisymmetric, while
decaying by Ekman damping and lateral viscous effects. These vortices are charac-
terized by their radius of maximum velocity (Rmax), the maximum velocity (Vmax), the
vortex strength (Γ ) and the peak vorticity in the vortex core (ω0). Measurements of
these quantities in laboratory experiments have been compared with numerically cal-
culated values of simulations based on the extended model M1 and the conventional
models M2 and M3. The results show that model M1 gives a better representation of
the vortex evolution than conventional models, which do not include the nonlinear
Ekman terms. It is found that the well-known vortex expansion (increase of Rmax) is
not only due to lateral viscosity (Kloosterziel 1990a) and to nonlinear stretching effects
(KvH92; M93) but also to nonlinear advection effects, driven by the Ekman layer.
This was shown by comparing numerical results from calculations with and without
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Figure 7. Upper row: calculated trajectories of a passive tracer in a non-isolated vortex, using
models M1, M2 and M3 (as in figure 2). The initial position of the tracer (×) is (x0, y0) = (1.7R, 0).
Lower row: time evolution of the radial distance of the tracer from the circle of radius 1.7R. The
small oscillations are attributed to the grid discretization.

including lateral viscous effects, stretching Ekman effects and advective Ekman terms.
In addition to the Rmax expansion, the Ekman advection effects in M1 lead to a
remarkable difference with respect to M2 and M3. In these models, there is no
outward advection of fluid, since the Jacobian term vanishes for axisymmetric flows.
This implies that the material trajectories are circles. In contrast, the Ekman advective
effects induce material particles to move outward in a spiral fashion. This is shown
in figure 7, where the calculated trajectories of a passive tracer are plotted. The initial
position of the tracer is (x0, y0) = (1.7R, 0). The trajectories are obtained from the sim-
ulations shown in figure 2, i.e. using M1, M2 and M3. Figure 7 also shows the radial
distance of the particle from the circle of radius 1.7R as a function of time; the tracer
moves outward in model M1, but remains at a fixed radius in models M2 and M3.

Some previous studies have also taken into account the nonlinear Ekman cor-
rections in the special case of axisymmetric flows. For instance, a basic model for
spin-up in a rotating cylinder was developed by Wedemeyer (1964). This model was
later extended by a number of authors (e.g. KvH92 and M93) in order to study
the spin-down of barotropic vortices. The Wedemeyer model considers the azimuthal
component of the Navier–Stokes equation, written in cylindrical coordinates (r, θ),
while assuming axisymmetric flow (∂/∂θ = 0); in dimensional form

∂vθ

∂t
+ ur(ω + f) = ν

∂ω

∂r
, (4.1)

where ur and vθ are the radial and azimuthal velocity components, respectively, and
the relative vorticity ω is defined as

ω =
1

r

∂

∂r
(rvθ). (4.2)
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When the bottom Ekman condition is considered, it is found that ur is proportional
to E1/2vθ/2 (in non-dimensional terms, KvH92 found ur = vθ/2). This result, together
with (4.1) and (4.2), is used to derive the vorticity equation:

∂ω

∂t
+ 1

2
E1/2vθ

∂ω

∂r
+ 1

2
E1/2ω(ω + f) = ν

1

r

∂

∂r

(
r
∂ω

∂r

)
. (4.3)

For comparing with the extended model M1, take into account that the Jacobian term
II in (2.27) vanishes for axisymmetric flows. In this case, after a change of coordinates,
it is found that term III becomes the advective term in (4.3) (with vθ = ∂ψ/∂r), and
term IV in (2.27) corresponds with the right-hand side of (4.3). In other words, for
the axisymmetric case, (2.22) reduces to (4.3). The obvious advantage of model M1
is that is not restricted to axisymmetric flows, and therefore it can be used to study
non-axisymmetric cases (see below).

On the other hand, isolated vortices may be unstable (Kloosterziel & van Heijst
1991) and lead to the formation of tripolar structures, which consist of a cyclonic core
and two anticyclonic satellites. Such a structure rotates as a whole in an anticlockwise
sense, while gradually slowing down. The experimental data of vH91, where laboratory
tripolar vortices were studied, have been compared with the corresponding numerical
simulations using model M1. Three measurements confirmed the better performance
of M1 in comparison with M2. This applies to (a) the decay of the core vorticity, (b)
the tripole orientation angle, and (c) the scatter plots, showing the relation between
the corrected values of the relative vorticity ω∗ and the stream function ψ∗ in a
frame co-rotating with the tripole. In particular, the error in the tripole’s azimuthal
orientation θ using M1 was less than one fourth of a revolution after a time-span
of one Ekman period TE . In contrast, model M2 showed a discrepancy of more
than two and a half revolutions. Also, the scatter plots confirmed the slower decay
of the negative-vorticity satellites compared with the positive-vorticity core, which
was suggested in other studies (vH91; OvH92). Kloosterziel (1990b) pointed out this
difference between cyclones and anticyclones by applying (3.6) to the peak vorticity
in the core of a tripolar vortex. From this expression, it is evident that ω0 < 0 implies
a slower peak vorticity decay than ω0 > 0.

It must be remarked that, as in model M2, the linear Ekman condition (2.9)
is used as the lower boundary condition. Without this assumption, the pumping
from the Ekman layer should be proportional to ω + O(ε) instead of just ω. This
correction, due to ageostrophic effects, would yield an additional term O(E1/2ε) in
the stretching terms E1/2[ω + O(ε)](ω + f). In the present approximation, i.e. using
(2.9), the ‘extra’ vertical velocity is not taken into account. The justification for using
the linear Ekman condition is empirical, as shown by the experimental results in
this paper. Calculation of the O(ε) correction in the Ekman condition may be a
difficult procedure (see e.g. Hart 1995, 2000). The present model, however, is quite
simple and the laboratory experiments can be simulated very effectively. Since the
main purpose is to understand the essential dynamics involved in the decay process,
this study is focused on understanding a simple two-dimensional model such as M1,
rather than deriving more complicated formulations, often difficult to interpret. Work
is in progress on the extension of model M1 to non-flat bottom topographies and the
results will be published elsewhere.
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Ciencia y Tecnologı́a (CONACYT, México) and from Eindhoven University of Tech-
nology (TUE).



Nonlinear Ekman effects 91

REFERENCES

Dalziel, S. 1992 Digimage. Image Processing for Fluid Dynamics. Cambridge Environmental Re-
search Consultants Ltd., Cambridge, UK.

García Sánchez, R. F. & Ochoa, J. 1995 Decaimiento de vórtices barotrópicos en el plano f. Rev.
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